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ABSTRACT

Direct numerical simulations of compressible, homogeneous, turbulent shear flows are

used to evaluate Reynolds stress models. Three pressure-strain models, which are either

linear, quadratic, or cubic in the anisotropy tensor, are considered. Dilatational dissipation

and pressure-dilatation models are inserted into the Reynolds stress closure. Results show
• |.

that variable-density extensions of lncompresmble pressure-strain correlation models do not

correctly capture the compressibility effects seen in the direct simulations. In particular, the

increase in the anisotropy of normal stresses and the reduction in the shear stress are not

reproduced by any of the models. Also, the use of the incompressible form of the dissipation-

rate equation to determine the solenoidal part of the dissipation is found to be questionable.



1. INTRODUCTION

A resurgenceof interest in hypersonicshas emerged,which is driven by advancednew

applications suchas high-speedcivil transport aircraft, supersoniccombustionramjets and

transatmosphericvehicles.Thesenewapplicationsbring into prominencesomecritical items

that have limited the effectivenessof computational fluid dynamics codesusedastools for

hypersonicsystemdesign. Chief amongtheseis compressibleturbulence modeling. Several
turbulence modelsof varying degreesof complexity havebeendevelopedthat rangefrom the

simplest algebraicor zero-equationmodel to the full Reynoldsstressclosure. Most of these

models are simple extensionsof their incompressiblecounterparts, where compressibility
effectsare incorporated into the models through changesin the mean density. However,

many studies have shownthat this type of model is unable to reproducesomefeaturesof

flows that depend on compressibility,such as the reduction in the spreading rate of the
compressiblemixing layer as the Math number increases.Thus, a better understandingof
the effectsof compressibility on flow turbulence is neededto improve current turbulence
models.

Recently, direct numerical simulation (DNS) of compressible,homogeneousturbulent
shearflow by Blaisdell (1990)hasshownthat the growth of turbulent kinetic energydecreases

as the Mach number increases. The reduction is due to two compressibility terms: the

dilatational dissipation and pressure-dilatationcorrelation, which explicitly appear in the

turbulent kinetic energyand meantemperatureequations. Zeman(1990, 1991)and Sarkar
(1991, 1992) have modeled the additional terms; the inclusion of the two terms in two-

equation turbulence models leadsto a significant improvement in predicting the reduction

in spreadingrate with increasingMachnumber.
In this paper, an assessmentof Reynoldsstress models in predicting compressibleho-

mogeneousshearflow is conductedwith the DNS of Blaisdell (1990). Three pressure-strain

correlation models, which are variable-densityextensionsof their incompressiblecounter-

parts, are considered.Thesemodelsare either linear, quadratic, or cubic in the anisotropy
stresstensor. The dilatational dissipation and pressure-dilatationcorrelation,which are the

only explicit compressibility terms,are inserted into the Reynoldsstressclosure.Particular

attention will be paid to the ability of each turbulencemodel to predict equilibrium states
accurately.

2. MATHEMATICAL FORMULATION

In compressible,turbulent flows, two averagingtechniquesare commonly usedto define

the mean and fluctuating parts of a turbulent variable. Usually, conventional Reynolds



averages are used for the pressure p and the density' p; Favre averages are used for the

velocity ui and the temperature T. Thus, any dependent variable f can be decomposed into

mean and fluctuating parts in two ways:

f=-f+f,, f=f+f" (1)

where the overbar represents the Reynolds average, the tilde denotes the Favre average, and

the primes and double primes are, repectively, the deviations from the Reynolds average and

the mass-weighted average. The Favre average f is a density-weighted Reynolds average

Pf (2)f=-z-
P

We will consider the problem of compressible, homogeneous shear flow. In this problem,

an initially decaying, compressible turbulence is subjected to a uniform shear S with the

corresponding mean velocity gradients

a ,j = (3)

The flow is assumed to be an ideal gas, which satisfies the equation of state p = _RT. The

evolution equation of the mean temperature, derived from the energy equation, is given by

-- = e - rra (4)
c_ Dt

where e is the total dissipation rate, _rd = p'd'/-fi is the specific pressure-dilatation, and G, is

the specific heat at constant volume.

For a compressible homogeneous shear flow at high Reynolds numbers, the Favre-averaged

- "- " is a solution of the transport equationReynolds stress tensor rij = ui uj

Dria - Pij na Hij _ _£_Sij _t_ _dSi j (5)
Dt

where I10 is the deviatoric part of the pressure-strain correlation and Pij = --rikttj,k -- Yjk[ti,k

is the production term. Here, the Kolmogorov hypothesis of isotropy is invoked to model

the dissipation rate tensor.
If II ,

The transport equation for the turbulent kinetic energy lq = u iu i/2 is obtained by

contracting indices in Eq. (5) as

DK
- P - e + (6)

Dt

where 5p = --rijttij is the turbulence production.



As shown by Zeman and Sarkar, the dissipation rate of compressible homogeneous flow

at high Reynolds numbers can be decomposed into a solenoidal or incompressible part, es,

and a compressible part, Ca as

c = e8 + _d (7)

- , , :- r _ 'isthewhere e_ = l]_.li&i and ed = hu(ui,i) given that _ is the kinematic viscosity and coi

fluctuating vorticity. Direct simulations of compressible, homogeneous shear flows show

that e_ is largely independent of compressibility and that the growth of turbulent kinetic

energy decreases as the Math number increases because of the augmented contribution of

the compressible dissipation. Therefore, ed is modeled and e_ is obtained by solving the

incompressible form of the dissipation equation

Cs ~ Cs 2

Des C_1 -ffrijui,j (8)Dt - - C_2 --_

where C_1 and C_2 are closure coefficients that are model dependent. The models of the

dilatational dissipation and pressure-dilatation correlation considered are

Sarkar

ec = 0.hM:e8 (9)

_7= -0.15p-'PMt + 0.2_e,M_ (10)

where Mt = v/2K/TRT is the turbulent Mach number and 3' is the ratio of specific heats (=

1.4).

Zeman

with

cc = 0.75(1 - exp(-((Mt - 0.1)/0.6) 2))cs (11)

(12)

Tf = 0.4Kmt (13)

- M?+Mt
p2 = 2_2KTR27( 1 + Mt 2 + Mr4) (14)

Finally, we consider incompressible pressure-strain models, which are modeled as linear

functions of the mean velocity gradients with coefficients that depend algebraically on the

anisotropy tensor and the turbulent dissipation rate. Compressibility effects are incorporated

through changes in density. Three models will be analyzed: the Launder, Reece, and Rodi

(LRR) model (1975); the Fu, Launder, and Tselepidakis (FLT) model (1987); and the
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Speziale, Sarkar, and Gatski (S.qG) model (1991). These models are either linear (LRR),

quadratic (SSG), or cubic (FLT) in the anisotropy tensor

1 _I(5_j (15)bij - 2K (vii - )

and are assumed to be only functions of the anisotropy b and the symmetric and antisym-

metric parts of the mean velocity gradient

1 (0'_, 0_5_ (16a)

l(Ofii 0f, j_ (16b)
_rij = _ \ox, ox, ]

The high Reynolds number forms of these models are

Launder, Reece, and Rodi (LRR)

IIi./(b, S, "W)

where

-Clebij + C2K(Sij -- 51_kk50) + C3K(bik,_jk + bjkSik - _bkl,_klS_j)

-_ C4I( ( bik _Vjl¢ + bjk _Vik ) (17a)

C1 = 3, C2 = 0.8,

C3 = 1.745, C4 = 1.309 (17b)

Fu, Launder, and Tselepidakis (FLT)

IIij (b, S, "v;¢) 6 (bikbkj - _bk, bk,_ij) ]120/Iv/-Fe [bo + -_

+ 1_,_I;(_j- 5 _) +

26
+ i--_,5I'2 (bikI"l'_k + bjki_'_ik)

+ 51( [(bi,_bktS'j/+ bjkbk,,_,,- 2bikSk, b_.i - 3bklSklbi_)

-4rK [8II(bikl]Vjk +bjklTlqk) + 12 (bikbkllTVlmbraj "+ bjkbkl|_rnbmi)]
(18_)



where

1 1 b
II = --_bijbij, III = -_ ijbjkbkt

r = 0.7, F = 1 + 9II + 27111 (18b)

Speziale, Sarkar, and Gatski (SSG)

Ilij(b,S, '_r - (Cle T C_$_)bij + C2c (bikbkj - _bklbkl$ij)

1-

+ (C3-C;_ K(S,3- 5S_)
(19a)

- 2 b -

where 7_ = --rklSkt is the turbulence production and

C1 = 3.4, C_ = 1.80, C2 = 4.2,

6'3 = 0.8, C_ = 1.30, C4 = 1.25, (19b)

6'5 = 0.40

As mentioned previously, the closure coefficients C_1, C¢2, and Ce for the turbulent dis-

sipation rate equation (Eq. (8)) are model dependent. The values for these coefficients are

given by

Launder, Reece, and Rodi (LRR)

Cel : 1.44, C_2 = 1.90

Fu, Launder, and Tselepidakis (FLT)

Gel : 1.45, C_2 = 1.90

Speziale, Sarkar, and Gatski (SSG)

C_1 = 1.44, C_2 = 1.83

(20a)

(2oh)

(2Oc)



In the LFIR and SSG models, the dissipation rate eij is modeled through the usual isotropic

---- 2assumption eij 5eSij, whereas in the FLT model the tensor dissipation rate explicitly

accounts for anisotropic effects:

gij = _gv_Sij + 2(1 - v/-F)gbij (21)

Dig 2 P (c-
Dt* - Mi (S-K)(-- - --)(1 + aM_)) (17)

Cs _s

D e_ es 2 P)
_t-7(_-_)--= (_--_) ((C_l - 1)(-- - (C_2- (_))) (18)

Cs

Dbij _ II 0 (Pij 2P cs (7) e + 7rd)(__..)b 0 (19)
" + c, St<Dt* 2_ Ii e, 3 e_

where t* = St is the dimensionless time, K* = K/Ko, Ko is the initial value of turbulent

kinetic energy, and a = "f(_ - 1)/2. An additional equation, Eq. (12), is needed when

Zeman's model is used.

This system of nonlinear ordinary differential equations associated with each Reynolds stress

model is solved subject to the initial conditions

¢s/SI£, bij, K, and Mt as follows:

DK" (2612 + (e - rre ..... (16)
Dt* - ll_---- ) ) I_

K*=I,
SK

- 0.45, Mt z = 0.094,

bn = 0.124, b22 = 10.106, b12 =-0.187

at time t* = 0, which is taken from the DNS of Blaisdell (run Sha192) at t* = 2. The reason

for this is that the initial conditions of the DNS at t" = 0 are nonphysical. See Speziale

et al. (1992). The system was integrated with a fourth-order Runge-Kutta scheme. The

equilibrium states for each turbulence model are obtained numerically. A comparison of the

predictions of the models with the DNS data will be made in the next section.

where F has been defined previously in Eq. (18b).

Calculations of compressible, homogeneous shear flows show that the Reynolds stresses,

the dissipation rate, and the mean temperature grow exponentially, so that the anisotropy

tensor bij, the shear parameter SK/es and the turbulent Mach number Mt achieve equilib-

rium values that are independent of the initial conditions. Therefore, the system of equations

for rij, e, and T is nondimensionalized and is recast into an equivalent set of equations for



4. RESULTS AND DISCUSSION

The predictions of the SSG, LRR, and FLT models with Sarkar's compressibility correc-

tions will be compared with the DNS results of Blaisdell (run Sha192).

Figures 1 and 2 show the time evolution of the turbulent kinetic energy and the turbulent

Mach number, predicted by the SSG model for two initial turbulent Mach numbers Mr0 =

0 and Mr0 = 0.307. These figures clearly show that a variable-density extension of the

SSG model is not capable of capturing the decrease of the growth rate of turbulent kinetic

energy as the turbulent Mach number increases. Explicit compressibility corrections are

needed to predict the trends of the DNS. However, the model SSG overpredicts the growth

rate of solenoidal and total dissipation (Figs. 3 and 4), which accounts for the overly large

equilibrium value of the shear parameter (Fig. 5). Also, the differences in the predictions

between turbulence models are shown (Figs. 6 - 10). The SSG and FLT models reproduce

the results fairly well. However, the LRR model performs poorly because it was not well

calibrated in incompressible, homogeneous shear flow. See Abid and Speziale (1993).

In Figures 11 - 13, the model predictions for the time evolution of Reynolds stress

anisotropies are shown. All of the models substantially underpredict the Reynolds stress

anisotropies in comparison with the results of the DNS. Also, the relaxation of bij to their

equilibrium states has not been captured by all the models. As pointed out by Speziale,

Gatski, and Sarkar (1992), the long time behavior of turbulence models is tied to their

ability to predict the equilibrium values.

In fact, all the models predict exponential long time behavior, i.e., K, ¢, T, and r_j

proportional to exp()_t*), where Am is the equilibrium growth rate given by

lo_ -2(b12)_ .c - _ra= - (20)

The equilibrium states obtained from the various turbulence models are compared with

the DNS data of Rogers et al. (1986) for incompressible homogeneous shear flow (table

I) and the DNS data of Blaisdell (1990) for compressible homogeneous shear flow with

Sarkar's model (table II). Several observations in regard to these results are noteworthy: the

Reynolds stress anisotropies (b_j)_ and the shear parameter (SK/_s)_ are underpredicted

by all models, particularly (bn)_; the shear stress (b12)_ is erroneously predicted to be

insensitive to the compressibility effects; and the SSG and LRR models predict the observed

trend that (bn)_ increases as a function of the turbulent Mach number Mt (however the

FLT model erroneously predicts the opposite trend of the DNS data). Similar conclusions

are drawn when Zeman's model is used. See table III.

All of the turbulence models are clearly incapable of properly accounting for the effects

of compressibility on turbulent shear flow. The failure of the Reynolds stresses to predict
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the increasein the anisotropy of normal stressesand the reduction in the shear stress is

partly due to the useof the incompressiblepressure-straincorrelation models. As shownby

Blaisdell and Sarkar (1993), the contribution of the compressibility to the pressure-strain

correlation is large and must be taken into account.
Another deficiencyof the turbulence models consideredin this study lies in the useof

the incompressibleform of the dissipation equation to obtain the solenoidal part of the

dissipation rate. The results presentedin tables I and II show clearly that (T'/es)_ois

erroneouslypredicted to be sensitiveto the compressibility effects. When an equilibrium

state is achieved,Eq. (18) gives

C_2 - 1 1 - 7rd
( P---)o¢ - ( )(ed ) (21)

Cs Cel 1 C_1 - 1 es

where the first term in the right side represents the equilibrium value of 7_/c_ in incompress-

ible, homogeneous shear flow. Equation (21) clearly shows that the erroneous prediction

of (P/5_)oo is directly tied to the solenoidal dissipation equation. This conclusion can be

reached in other ways.

The value of (T'/e_)_ can be determined from Eq. (17) as

( )_=(l+(Cde 7rd))(l+_m_) (22)

The combination of Eqs. (21) and (22) leads to

(23)1
( )_ (C_,-l+_)

The above equation, which is independent of the dilatational dissipation and pressure-

dilatation models, shows that (7_/e_)o_ cannot be insensitive to the compressibility effects

as seen in the direct simulations, otherwise Eq. (23) will predict nonphysical values for Mt

(Mto_ = 1.7 when (P/e_)_ = 1.84). Note that the system of Eqs. (16)-(19) will predict

nonphysical results for Mt_ if the explicit compressibility equations are not included.

4. CONCLUDING REMARKS

Three Reynolds stress models have been evaluated for the problem of compressible, homo-

geneous shear flow. The dilatational dissipation and pressure-dilatation correlation models,

formulated by Zeman and Sarkar, have been inserted in the Reynolds stress closure. Com-

parisons between the predictions of the various models and the direct numerical simulation

of Blaisdell have been made.

All three Reynolds stress models fail to capture the compressibility effects seen in the

direct simulations. In particular, the increase in anisotropy of the normal stresses and the

9



reduction in the shear stress are not reproduced by any of the models. This result is partly

due to the use of variable density extensions of incompressible pressure-strain models. Thus,

dilatational effects on the pressure-strain correlation must be identified and accounted for in

compressible turbulence modeling.

An analysis of the predictions of the equilibrium states has shown that use of the in-

compressible form of the dissipation to determine the solenoidal dissipation rate is another

source of inaccuracy in the predictions. In particular, the erroneous prediction of (T:'/es)oo

is directly tied to the solenoidal dissipation equation.

The present study indicates the need for further direct numerical simulations of com-

pressible, homogeneous shear flows. Such simulations could be used to distinguish between

compressibility and low Reynolds number effects and to provide more information on the

equilibrium states.

10
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Equilibrium

Values

511

512

522

533

SK/c 

P/cs

LRR

Model

0.155

-0.187

-0.121

-0.004

5.34

2.0

SSG

Model

0.219

-0.164

-0.146

-0.073

5.77

1.88

FLT

Model

0.208

-0.146

-0.144

-0.064

6.84

2.0

DNS

Data

0.215

-0.158

-0.153

-0.062

5.70

1.80

Table 1. Predicted Equilibrium Values for Incompressible Homogeneous Shear Flow.
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Equilibrium
Values

bll

512

b22

533

SK/e_

Mt

P/e,

LRR

Model

0.166

SSG

Model

0.230

FLT

Model

0.189

DNS

Data

0.424

-0.187

-0.130

-0.036

-0.165

-0.148

-0.082

-0.148

-0.138

-0.051

-0.118

-0.236

-0.188

3.77

0.65

1.41

4.11

0.60

1.36

4.77

0.65

1.41

7.82

0.51

1.84

Table 2. Predicted Equilibrium Values for Compressible Homogeneous Shear Flow with

Sarkar's Model.
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Equilibrium
Values

bll

512

522

_33

SK/e,

M,

P/es

LRR

Model

0.167

-0.191

-0.131

-0.036

3.59

0.48

1.41

SSG

Model

0.231

-0.167

-0.148

-0.083

3.95

0.45

1.36

FLT

Model

0.187

-0.148

-0.137

-0.050

4.61

0.48

1.41

DNS

Data

0.424

-0.118

-0.236

-0.188

7.82

0.51

1.84

Table 3. Predicted Equilibrium Values for Compressible Homogeneous Shear Flow with

Zeman's Model.
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Figure 1. Comparison of the predictions of the SSG model for the time evolution of the

turbulent kinetic energy with the DNS results of Blaisdell.
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Figure 2. Comparison of the predictions of the SSG model for the time evolution of the

turbulent Mach number with the DNS results of Blaisdell.
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Figure 3. Comparison of the predictions of the SSG model for the time evolution of the

solenoidal dissipation-rate with the DNS results of Blaisdell.
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Figure 4. Comparison of the predictions of the SSG model for the time evolution of the total

dissipation-rate with the DNS results of Blaisdell.
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Figure 5. Comparison of the predictions of the SSG model for the time evolution of SKies

with the DNS results of Blaisdell.
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Figure 6. Comparison of the predictions of the LRR, SSG and FLT models for the time

evolution of the turbulent kinetic energy with the DNS results of Blaisdell.
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Figure 7. Comparison of the predictions of the LRR, SSG and FLT models for the time

evolution of the turbulent Mach number with the DNS results of Blaisdell.
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Figure 8. Comparison of the predictions of the LRR, SSG and FLT models for the time

evolution of the solenoidal dissipation-rate with the DNS results of Blaisdell.
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Figure 9. Comparison of the predictions of the LRR, SSG and FLT models for the time

evolution of the total dissipation-rate with the DNS results of Blaisdell.
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Figure 10. Comparison of the predictions of the LRR, SSG and FTL models for the time

evolution of SK/¢, with the DNS results of Blaisdell.
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Figure 11. Comparison of the predictions of the LRR, SSG and FLT models for the time

evolution of the component bll of the Reynolds stress anisotropy tensor with the DNS results

of Blaisdell.
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Figure 12. Comparison of the predictions of the LRR, SSG and FLT models for the time

evolution of the component b22 of the Reynolds stress anisotropy tensor with the DNS results

of Blaisdell.
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Figure 13. Comparison of the predictions of the LRR, SSG and FLT models for the time

evolution of the component bn of the Reynolds stress anisotropy tensor with the DNS results

of Blaisdell.
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